Nonlinear QED Effects in Strong-Field Magnetohydrodynamics

نویسندگان

  • Jeremy S. Heyl
  • Lars Hernquist
چکیده

We examine wave propagation and the formation of shocks in strongly magnetized plasmas by applying a variational technique and the method of characteristics to the coupled magnetohydrodynamic (MHD) and quantum-electrodynamic (QED) equations of motion. In sufficiently strong magnetic fields such as those found near neutron stars, not only is the plasma extremely relativistic but the effects of QED must be included to understand processes in the magnetosphere. As Thompson & Blaes [1] find, the fundamental modes in the extreme relativistic limit of MHD coupled with QED are two oppositely directed Alfvén modes and the fast mode. QED introduces nonlinear couplings which affect the propagation of the fast mode such that waves traveling in the fast mode evolve as vacuum electromagnetic ones do in the presence of an external magnetic field [2]. The propagation of a single Alfvén mode is unaffected but QED does alter the coupling between the Alfvén modes. This processes may have important consequences for the study of neutron-star magnetospheres especially if the typical magnetic field strength exceeds the QED critical value (BQED ≈ 4.4×1013 G) as is suspected for soft-gamma repeaters and anomalous X-ray pulsars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields.

The emission from an electron in the field of a relativistically strong laser pulse is analyzed. At pulse intensities of J>or=2x10(22) W/cm(2) the emission from counterpropagating electrons is modified by the effects of quantum electrodynamics (QED), as long as the electron energy is sufficiently high: E>or=1 GeV . The radiation force experienced by an electron is for the first time derived fro...

متن کامل

Interferometry of light propagation in pulsed fields

– We investigate the use of ground-based gravitational-wave interferometers for studies of the strong-field domain of QED. Interferometric measurements of phase velocity shifts induced by quantum fluctuations in magnetic fields can become a sensitive probe for nonlinear self-interactions among macroscopic electromagnetic fields. We identify pulsed magnets as a suitable strong-field source, sinc...

متن کامل

Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet

In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...

متن کامل

Nonlinear collective effects in photon–photon and photon–plasma interactions

We consider strong-field effects in laboratory and astrophysical plasmas and high intensity laser and cavity systems, related to quantum electrodynamical (QED) photon–photon scattering. Current state-of-the-art laser facilities are close to reaching energy scales at which laboratory astrophysics will become possible. In such high energy density laboratory astrophysical systems, quantum electrod...

متن کامل

Magnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach

A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998